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Housing price prediction: models

• We build a model by fitting the line to data

• We can fit many different models: linear model, square model or a 
very high-degree polynomial

• Which model is better?

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + + w2x2 + w2x2 + b



Housing price prediction: models

• In this example we can “see” that the shape of our data closely 
resembles a second degree polynomial

• But that is only clear if we can visualize the dataset (in two 
dimensions)

• It is not easy to visualize a multi-dimensional dataset!

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b



Housing price prediction: models

We try different models and choose the one with 

• The best train set accuracy?
• The best test set accuracy?

or?

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b



Simple models

Simple models assume that the relationship between y and x is simple 
(for example, linear)

A B C

Simple

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b



Simple models

In the extreme case, simple models assume that for each x the value of 
y is exactly the same (ignoring real data altogether)

A B C

Extremely simple

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b



Simple models

We say that the model ignores the data and is biased towards a 
specific value

A B C

Extremely Simple

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b



Simple models

The model is biased towards a specific value or towards a specific 
function - ignoring the data and causing underfitting

What will be the training error? And testing error?

A B C

Simple

High bias

Underfitting

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b



Simple models

Training error is high, and if the data is really non-linear - the testing 
error will also be very high

Solution: make model more complex by forcing the function vary in 
accordance with data – increase model’s variance

A B C

Simple

High bias, low variance

Underfitting

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b



Overcomplicated models

We build more and more complex models which closely align with the 
data (reflect the variance in data), and at some point we fit the data 
perfectly (C)

What would be the training error? And the testing error?

A B C

Simple

High bias, low variance

Underfitting

Overcomplicated

Low bias, high variance

Overfitting

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b



Overcomplicated models

We build more and more complex models which closely vary with the 
data, and at some point we fit the data perfectly

The training error is close to 0, and the testing error is very high

A B C

Simple

High bias, low variance

Underfitting

Overcomplicated

Low bias, high variance

Overfitting

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b



Overcomplicated models

We say that our model just memorized the training points and 

failed to generalize

A B C

Simple

High bias, low variance

Underfitting

Overcomplicated

Low bias, high variance

Overfitting

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b



Model error always has 3 parts

A B C

A B C

E = Bias2+Variance+Irreducible Error

The goal is to select a model with the 
best predictive power possible  -
model B



Bias-variance tradeoffs

large bias/small variance: 

too few features

highly pruned decision trees

large-k k-NN

small bias/high variance: 

too many features

unpruned trees

small-k k-NN

Click me

http://scott.fortmann-roe.com/docs/BiasVariance.html


Identify which of these models 
have high/low bias/variance

Polynomial Regression

Decision Boundary (Logistic Regression, SVM)

Linear Regression



So, how do we discover model B?

We start from the simplest possible model and evaluate the training 
error

We gradually increase complexity gradually, the training error becomes 
smaller: we lowering bias and increasing variance

Each time we also test the model on the validation set (not used for 
learning):

• If test error is low and close to the train error - we found a good 
model!

• If test error is much higher than the train error - model failed to 
generalize. We followed data too closely and arrived at overfitting

A B C



Dealing with high-variance 
models (overfitting)

Solutions:

• Remove some features
• Select “important” features manually
• Use a feature selection algorithm

• Use regularization
• Keep all features but reduce their weights

Regularization - a subset of methods used to encourage generalization
in learned models, mainly by making it difficult for a model to 
concentrate on the fine-grained details of training data



Regularization for linear regression

Gradient descent finds the weights for the global minimum of SSR: the 
bottom of the bowl - the red dot in the projection (contours) of the 
hyperplane 

By making error too close to 0, we can overfit the training data

E E



L2 Norm or Ridge Regression

L2 Norm is an Euclidean distance norm of the form |w1|² + |w2|²

Let say we have n two-dimensional feature vectors, each vector xi with 
its target variable ti We then add an Euclidean distance norm to the 
modified cost function:

where y(x) = w1x1 + w2x2 + b is an equation of the line (hyperplane) we 
are trying to fit to data using gradient descent

A particular value of (w1, w2) adds a new “bias” component to the 
error function and will force to keep weights smaller

The equation with smaller weights (smaller correlation between some 
features and the output) will have smaller variance (varying with data 
less)

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)



Looking for a global minimum of 
a new objective cost function

Modified Cost function with L2 Regularization:

We now search for a global minimum of this cost function by taking 
partial derivatives with respect to b, w1 and w2

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)



𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)

Let’s say 𝞴= 1 and the minimum value of L2 norm is also 1. 

Then there could be many possible values of (w1, w2) that give the 
value 1. All these combinations of  (w1, w2) make a circle with radius 1

We are trying to minimize both the SSR and the bias - at the same time

w1
w1

w2

w2
We are trying to minimize 
this function

L2 Regularization: visually



We are trying to minimize both the SSR and the bias - thus there are 
two forces pulling into different directions: 

• Force 1: Bias term pulling w1, and w2 to lie somewhere on the 
black circle only

• Force 2: Gradient trying to descent to the global minimum 
indicated by green dot

w1w1

w2 w2

L2 Regularization: visually
𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)



L2 Regularization: visually

Both forces pull and eventually settle near the point of 
intersection indicated by ‘Red cross’

Descending further towards the green dot will increase the bias 
term. We can lower the bias term moving towards smaller weights 
(inside the circle), but that will increase the SSR

w1w1

w2 w2

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)



L2 Regularization: visually

We assumed that 𝞴= 1 and the value of L2 norm is 1. 

Let’s keep 𝞴= 1 and try to minimize the overall bias term 

The values of the norm then will be a set of different circles centered 
at (0,0) and the result of optimization will be somewhere at the 
intersection of one of these circles and the contours - where the 
overall function is minimized - for a given 𝞴

w1w1

w2 w2

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)



L2 Regularization: visually

Now try a different value - say λ = 0.5

Repeat the Gradient Descent process for λ = 0.5 and test on validation 
set

This process is repeated for various values of λ - to identify the 
optimum value of λ

λ is called a hyperparameter: the parameter that is not learned by the 
algorithm but is set by an experimenter

w1w1

w2 w2

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝝀(|𝑤1|

2 + |𝑤2|
2)



L2 Regularization: visually

The overall objective is always to have low cost after the Gradient 
Descent →  the values of λ, w1,w2 are identified keeping that as 
objective

By the end of this process, the Variance is reduced - i.e. all weights are 
reduced in magnitude 

w1w1

w2 w2

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝝀(|𝑤1|

2 + |𝑤2|
2)



L1 norm or Lasso Regression

In this case we minimize the following error function:

We still try to keep the weights from getting too big - but the weights 
are now not squared

This is less restrictive: the bias term is a sum of weights, not the sum of 
squared weights

𝐸𝑟𝑟𝑜𝑟𝐿𝑎𝑠𝑠𝑜 =

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝝀(|𝒘𝟏| + |𝒘𝟐|)



L1 Regularization: visually

Every sum of weights we are trying to minimize would lie on a 
diamond defined by line equations 

Again, we are trying to minimize both L1 norm and SSR and the best 
solution is on the intersection of the contours with one of the 
diamonds

w1w1

w2 w2

𝐸𝑟𝑟𝑜𝑟𝐿𝑎𝑠𝑠𝑜 =

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝝀(|𝒘𝟏| + |𝒘𝟐|)



Property of L1 Regularization

For the same value of the bias term, the area occupied by L1 Norm is 
smaller than by L2 Norm 

The point of intersection between the L1 Norm and Gradient Descent 
Contours tend to converge near the axes



Property of L1 Regularization

It means that some of the weights become zero!

L1 regularization leaves only important features and produces zeros 
for some weights → it can be used for feature selection



Regularizations for linear 
regression: summary

Linear regression: [prediction]

Ridge regression: [prediction] [bias-variance tradeoff]

Lasso regression: [prediction] [bias-variance tradeoff] [feature selection]

There is also Elastic Net: uses both L1 and L2 norms



Fascinating math behind 
regularization

https://youtu.be/u73PU6Qwl1I

https://www.youtube.com/watch?v=KvtGD37Rm5I

https://www.youtube.com/watch?v=qbvRdrd0yJ8

https://youtu.be/u73PU6Qwl1I
https://www.youtube.com/watch?v=KvtGD37Rm5I
https://www.youtube.com/watch?v=qbvRdrd0yJ8


Intuition behind regularization

Regularization artificially discourages complex or extreme 
explanations of the world even if they fit our current dataset

The idea is that complex explanations are unlikely to 
generalize well to the future - they may happen to perfectly 
explain data points from the past, but this may just be 
because of the properties of the current dataset


