
Learning to generalize.
Bias-variance tradeoff.

Regularization

Intuition

Lecture 16
by Marina Barsky

Housing price prediction: models

• We build a model by fitting the line to data

• We can fit many different models: linear model, square model or a
very high-degree polynomial

• Which model is better?

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + + w2x2 + w2x2 + b

Housing price prediction: models

• In this example we can “see” that the shape of our data closely
resembles a second degree polynomial

• But that is only clear if we can visualize the dataset (in two
dimensions)

• It is not easy to visualize a multi-dimensional dataset!

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b

Housing price prediction: models

We try different models and choose the one with

• The best train set accuracy?
• The best test set accuracy?

or?

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b

Simple models

Simple models assume that the relationship between y and x is simple
(for example, linear)

A B C

Simple

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b

Simple models

In the extreme case, simple models assume that for each x the value of
y is exactly the same (ignoring real data altogether)

A B C

Extremely simple

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b

Simple models

We say that the model ignores the data and is biased towards a
specific value

A B C

Extremely Simple

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b

Simple models

The model is biased towards a specific value or towards a specific
function - ignoring the data and causing underfitting

What will be the training error? And testing error?

A B C

Simple

High bias

Underfitting

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b

Simple models

Training error is high, and if the data is really non-linear - the testing
error will also be very high

Solution: make model more complex by forcing the function vary in
accordance with data – increase model’s variance

A B C

Simple

High bias, low variance

Underfitting

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b

Overcomplicated models

We build more and more complex models which closely align with the
data (reflect the variance in data), and at some point we fit the data
perfectly (C)

What would be the training error? And the testing error?

A B C

Simple

High bias, low variance

Underfitting

Overcomplicated

Low bias, high variance

Overfitting

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b

Overcomplicated models

We build more and more complex models which closely vary with the
data, and at some point we fit the data perfectly

The training error is close to 0, and the testing error is very high

A B C

Simple

High bias, low variance

Underfitting

Overcomplicated

Low bias, high variance

Overfitting

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b

Overcomplicated models

We say that our model just memorized the training points and

failed to generalize

A B C

Simple

High bias, low variance

Underfitting

Overcomplicated

Low bias, high variance

Overfitting

y= wx + b y= w1x + w2x2 + b y= w1x + w2x2 + …+ w3x3 + w4x5 + b

Model error always has 3 parts

A B C

A B C

E = Bias2+Variance+Irreducible Error

The goal is to select a model with the
best predictive power possible -
model B

Bias-variance tradeoffs

large bias/small variance:

too few features

highly pruned decision trees

large-k k-NN

small bias/high variance:

too many features

unpruned trees

small-k k-NN

Click me

http://scott.fortmann-roe.com/docs/BiasVariance.html

Identify which of these models
have high/low bias/variance

Polynomial Regression

Decision Boundary (Logistic Regression, SVM)

Linear Regression

So, how do we discover model B?

We start from the simplest possible model and evaluate the training
error

We gradually increase complexity gradually, the training error becomes
smaller: we lowering bias and increasing variance

Each time we also test the model on the validation set (not used for
learning):

• If test error is low and close to the train error - we found a good
model!

• If test error is much higher than the train error - model failed to
generalize. We followed data too closely and arrived at overfitting

A B C

Dealing with high-variance
models (overfitting)

Solutions:

• Remove some features
• Select “important” features manually
• Use a feature selection algorithm

• Use regularization
• Keep all features but reduce their weights

Regularization - a subset of methods used to encourage generalization
in learned models, mainly by making it difficult for a model to
concentrate on the fine-grained details of training data

Regularization for linear regression

Gradient descent finds the weights for the global minimum of SSR: the
bottom of the bowl - the red dot in the projection (contours) of the
hyperplane

By making error too close to 0, we can overfit the training data

E E

L2 Norm or Ridge Regression

L2 Norm is an Euclidean distance norm of the form |w1|² + |w2|²

Let say we have n two-dimensional feature vectors, each vector xi with
its target variable ti We then add an Euclidean distance norm to the
modified cost function:

where y(x) = w1x1 + w2x2 + b is an equation of the line (hyperplane) we
are trying to fit to data using gradient descent

A particular value of (w1, w2) adds a new “bias” component to the
error function and will force to keep weights smaller

The equation with smaller weights (smaller correlation between some
features and the output) will have smaller variance (varying with data
less)

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =෍

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)

Looking for a global minimum of
a new objective cost function

Modified Cost function with L2 Regularization:

We now search for a global minimum of this cost function by taking
partial derivatives with respect to b, w1 and w2

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =෍

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =෍

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)

Let’s say 𝞴= 1 and the minimum value of L2 norm is also 1.

Then there could be many possible values of (w1, w2) that give the
value 1. All these combinations of (w1, w2) make a circle with radius 1

We are trying to minimize both the SSR and the bias - at the same time

w1
w1

w2

w2
We are trying to minimize
this function

L2 Regularization: visually

We are trying to minimize both the SSR and the bias - thus there are
two forces pulling into different directions:

• Force 1: Bias term pulling w1, and w2 to lie somewhere on the
black circle only

• Force 2: Gradient trying to descent to the global minimum
indicated by green dot

w1w1

w2 w2

L2 Regularization: visually
𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =෍

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)

L2 Regularization: visually

Both forces pull and eventually settle near the point of
intersection indicated by ‘Red cross’

Descending further towards the green dot will increase the bias
term. We can lower the bias term moving towards smaller weights
(inside the circle), but that will increase the SSR

w1w1

w2 w2

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =෍

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)

L2 Regularization: visually

We assumed that 𝞴= 1 and the value of L2 norm is 1.

Let’s keep 𝞴= 1 and try to minimize the overall bias term

The values of the norm then will be a set of different circles centered
at (0,0) and the result of optimization will be somewhere at the
intersection of one of these circles and the contours - where the
overall function is minimized - for a given 𝞴

w1w1

w2 w2

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =෍

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝜆(|𝑤1|

2 + |𝑤2|
2)

L2 Regularization: visually

Now try a different value - say λ = 0.5

Repeat the Gradient Descent process for λ = 0.5 and test on validation
set

This process is repeated for various values of λ - to identify the
optimum value of λ

λ is called a hyperparameter: the parameter that is not learned by the
algorithm but is set by an experimenter

w1w1

w2 w2

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =෍

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝝀(|𝑤1|

2 + |𝑤2|
2)

L2 Regularization: visually

The overall objective is always to have low cost after the Gradient
Descent → the values of λ, w1,w2 are identified keeping that as
objective

By the end of this process, the Variance is reduced - i.e. all weights are
reduced in magnitude

w1w1

w2 w2

𝐸𝑟𝑟𝑜𝑟𝑅𝑖𝑑𝑔𝑒 =෍

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝝀(|𝑤1|

2 + |𝑤2|
2)

L1 norm or Lasso Regression

In this case we minimize the following error function:

We still try to keep the weights from getting too big - but the weights
are now not squared

This is less restrictive: the bias term is a sum of weights, not the sum of
squared weights

𝐸𝑟𝑟𝑜𝑟𝐿𝑎𝑠𝑠𝑜 =෍

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝝀(|𝒘𝟏| + |𝒘𝟐|)

L1 Regularization: visually

Every sum of weights we are trying to minimize would lie on a
diamond defined by line equations

Again, we are trying to minimize both L1 norm and SSR and the best
solution is on the intersection of the contours with one of the
diamonds

w1w1

w2 w2

𝐸𝑟𝑟𝑜𝑟𝐿𝑎𝑠𝑠𝑜 =෍

𝑖=1

𝑛

(𝑡𝑖 −𝑦𝑖)
2 + 𝝀(|𝒘𝟏| + |𝒘𝟐|)

Property of L1 Regularization

For the same value of the bias term, the area occupied by L1 Norm is
smaller than by L2 Norm

The point of intersection between the L1 Norm and Gradient Descent
Contours tend to converge near the axes

Property of L1 Regularization

It means that some of the weights become zero!

L1 regularization leaves only important features and produces zeros
for some weights → it can be used for feature selection

Regularizations for linear
regression: summary

Linear regression: [prediction]

Ridge regression: [prediction] [bias-variance tradeoff]

Lasso regression: [prediction] [bias-variance tradeoff] [feature selection]

There is also Elastic Net: uses both L1 and L2 norms

Fascinating math behind
regularization

https://youtu.be/u73PU6Qwl1I

https://www.youtube.com/watch?v=KvtGD37Rm5I

https://www.youtube.com/watch?v=qbvRdrd0yJ8

https://youtu.be/u73PU6Qwl1I
https://www.youtube.com/watch?v=KvtGD37Rm5I
https://www.youtube.com/watch?v=qbvRdrd0yJ8

Intuition behind regularization

Regularization artificially discourages complex or extreme
explanations of the world even if they fit our current dataset

The idea is that complex explanations are unlikely to
generalize well to the future - they may happen to perfectly
explain data points from the past, but this may just be
because of the properties of the current dataset

